行政院勞工委員會採樣分析建議方法

方法編號: CLA1006 等級: A 編輯日期: 95年9月22日

異丙苯 Cumene

容許濃度 參考資料: NIOSH 1501 3/15/2003 [1]

勞委會: 50 ppm(皮) [2]

OSHA :50 ppm(skin) 分子式:C₉H₁₂

NIOSH : 50 ppm(skin)

ACGIH: 50 ppm(skin) 分子量: 120.20

 $(1 \text{ ppm } = 4.92 \text{ mg/m}^3, @ \text{NTP})$

基本物性: 別名:isopropylbenzene

液態,密度 0.862 g/mL @ 20℃

進

沸點:152.4 ℃ CAS No.: 98-82-8

蒸氣壓: 4.7 mmHg @ 25℃ RTECS No.: GR8575000

 採樣介質:活性碳管 (100 mg/50 mg)
 方 法:GC/FID

 流 率:10 ~ 200 mL/min
 分析物:異丙苯

最大: 32 L 注射量:1 μ L

樣本運送: 例行性 儀器分析條件:

現場空白樣本:每批樣本數的10%,至少需二 —— 值檢器: 250℃ —— 管柱:100℃(恒溫)

範圍: 120~480 mg/m³(20 L 空氣樣本) 管柱: MXT-1 (性能等同DB-1)

偏差:5.6% 30 m × 0.53 mm(ID), 1 μ m

總變異係數(CV_T): 0.059 準確度: ±15.2% 標準樣本:分析物溶於二硫化碳中 檢量線範圍: 0.0235~16.8 mg/mL 可量化最低量: 0.0235 mg/sample

分析變異係數(CV_a): 2.0%

適用範圍:本方法可同時分析芳香族碳氫化合物之Ceiling 及TWA值,各種物質之相互影響會低破出體積及影響脫附效率。

干擾:高濕可能會降低破出體積,其他揮發性有機溶劑,例如醇類、酮類、酯類及鹵素族碳氫化合物存在可能會產生干擾。

安全衛生注意事項[1]:異丙苯、二硫化碳爲有毒的易燃液體(閃火點=-30℃),使用時需在通風良好的排煙櫃中進行,並穿戴適當的防護衣及手套。

註:本方法標出參考文獻處,指內容係直接引用該文獻。

1. 試藥

- 1.1 脫附劑:二硫化碳(分析級)。
- 1.2 分析物:異丙苯(分析級)。
- 1.3 氮氣。
- 1.4 氫氣。
- 1.5 經過濾空氣。

2. 設備

- 2.1 採集設備:活性碳管 (100 mg/50 mg),見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣介質 [3]。
- 2.2 個人採樣泵:流率 10 ~ 200 mL/min。
- 2.3 氣相層析儀:備有火焰離子化偵檢器(FID)、積分器以及管柱。
- 2.4 1.8 mL玻璃小瓶, 備聚四氟乙烯(PTFE)內襯的蓋子。
- $2.5\,10\,\mu$ L到 $50\,\mu$ L的微量注射針筒; $1\,\mathrm{mL}$ 的注射針筒。
- 2.6 振盪器。

3. 採樣

- 3.1 個人採樣泵連結活性碳管,進行流率校正,見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣[3]。
- 3.2 以正確且已知的流率採集空氣。採樣泵流率為 10~200 mL/min。應採集的空氣體積約1~32 L。
- 3.3 以塑膠蓋封蓋,並以石蠟薄膜(parafilm)加封。

4. 脫附效率測定及樣本脫附

- 4.1 脫附效率測定
 - 4.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之脫附效率[3]。
 - 4.1.2 將活性碳管兩端切開,倒出後段的活性碳,丟棄之。
 - 4.1.3 以微量注射針筒取適量的分析物,直接注入前段的活性碳上。添加量為 1.724 ~ 6.896mg。

- 4.1.4 以塑膠蓋封管,並以石蠟薄膜(parafilm)加封,冷藏靜置過夜。
- 4.1.5 以脫附劑脫附後,進行分析。

4.2 樣本脫附

- 4.2.1 打開活性碳管塑膠蓋,將斷口切開,使開口與管徑同大,取出前端之玻璃綿丟棄,前段之活性碳倒入 1.8 mL的玻璃小瓶中。取出分隔之聚甲醯胺甲酯(PU)泡綿,後段之活性碳倒入另一個1.8 mL的玻璃小瓶中。
- 4.2.2 每一玻璃小瓶中,加入脫附劑 1 mL,立即蓋上瓶蓋。
- 4.2.3 以振盪器振盪30分後,進行分析。

5. 檢量線製作與品管

5.1 檢量線製作

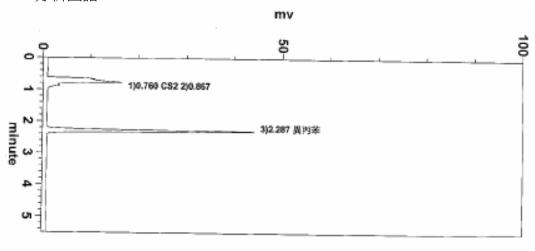
- 5.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與 品管[3]。
- 5.1.2 以注射針筒將標準品直接注入含有1 mL 脫附劑的玻璃小瓶中。所建立之 檢量線濃度範圍約爲 0.0235 ~ 16.8 mg/mL。(註:至少應配製5種不同濃 度的標準溶液,以建立檢量線。)
- 5.1.3 將標準溶液與空白樣本同批一起分析。
- 5.1.4 以分析物波峰面積(或高度)對分析物的濃度,繪製檢量線。

5.2 品質管制

5.2.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與 品管[3]。

6. 儀器分析

6.1 儀器分析條件


	條 件
儀器	GC/FID
管柱	MXT-1
	30 m(長) × 0.53 mm(內徑), 管內膜厚 1
	μ m
流率 (mL/min)	
空氣	410
氫氣	38
氮氣	14
溫度(℃)	
注入口	230
偵檢器	250
管柱	100

註:以SHIMADZU GC-14B爲例,亦可使用其它廠牌同級之儀器,但分析條件需另訂之。

6.2 大約滯留時間

化合物	滯留時間 (分鐘)
二硫化碳	0.76
異丙苯	2.29

6.3分析圖譜

6.4 脫附效率*

化合物	容許濃度	相當採樣體積	脫附量	平均脫附效率	分析變異係數
	(ppm) **	(L)	(mg/sample)	(%)	CVa (%)
異丙苯	50	7 ~ 28	1.724 ~ 6.896	93.1	2.02

^{*} 採樣介質爲SKC226-01 活性碳管(100 mg/50 mg)

6.4 注射樣本進入氣相層析儀,使用自動注射器或採用溶劑沖刷技術(solvent flush injection technique) —利用10 μ L 之注射針筒先以溶劑沖刷數次,濕潤針管與活塞,取約1 μ L溶劑後,吸入約0.2 μ L 空氣,以分開溶劑與樣本,針頭再浸入樣本中吸入1 μ L 樣本後,在空氣中後退約1.2 μ L,以減少針頭樣本蒸發之機會,檢視注射針筒之針管樣本佔0.9~1.1 μ L實際取樣量。

註:假如波峰面積超過標準溶液的線性範圍,則以二硫化碳稀釋後再分析,計算 時再乘回稀釋的倍數。

6.5 以電子積分器或其他適當方法計算面積,分析結果自檢量線上求出。

7. 計算

由檢量線濃度所求得之濃度乘以脫附溶液的體積(以 mL 爲單位),得到每個樣本分析物的質量(\mathbf{W})。

$$C = \frac{(W_f - B_f + W_b - B_b) \times 10^3}{V}$$

C:空氣中有害物濃度 (mg/m³)

V:採集氣體體積 (L)

 W_f : 前段活性碳管所含分析物之質量 (mg)

W_b: 後段活性碳管所含分析物之質量 (mg)

B_f:現場空白樣本前段的平均質量 (mg)

B_b:現場空白樣本後段的平均質量 (mg)

註:如(W_b) > ($W_f/10$)即表破出,樣本可能有損失。

^{**}民國92年12月勞工作業環境空氣中有害物容許濃度標準

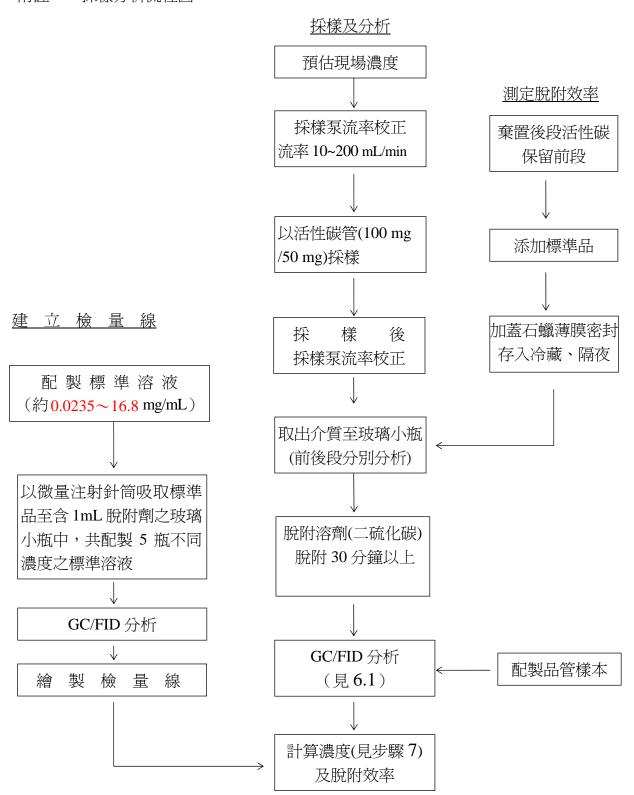
8. 方法驗證

	測試1	測試2	
儀 器	GC/FID (SHIMADZU GC-14B)	GC/FID(HP6890)	
分析條件 溫度 (°C) 注入口 偵檢器 管 柱 流率(mL/min) 空氣 氫氣 分流比 管柱	230 250 100 410 38 14 不分流 MXT-1 30 m × 0.53 mm(ID), 1 μ m	230 250 100 450 40 2.5 不分流 DB-1 30 m × 0.32 mm(ID), 0.25 μ m	
檢量線範圍	0.0216—8.62 mg/mL	0.0235—16.8 mg/mL	
線性相關係數	0.9989	0.9995	
平均脫附效率	93.1 %	106.2 %	
CVa	2.02 %	0.7 %	
滯留時間	2.29 min	4.35 min	

9. 高濕環境下破出測試

本方法評估是以注射泵驅動法 (syringe pump drive method) 產生標準氣體,並於30℃,80% RH高濕環境下進行6個樣本之破出測試;異丙苯測試濃度爲101.45 ppm,採樣流率爲200 mL/min,經240分鐘後,無破出現象產生,故建議最大採樣體積爲32 L。

10. 樣本貯放穩定性測試


添加3.448 mg異丙苯於採樣管,進行樣本貯放穩定性測試。於室溫貯存7天樣本之回收率爲97.5%,14天回收率爲101.7%,21天回收率爲96.0%,

28天回收率爲94.9%;於冷藏下貯存7天樣本之回收率爲94.3%,14天回收率爲104.1%,21天回收率爲95.4%,28天回收率爲94.8%,見表二。

11. 參考文獻

- [1] NIOSH Manual of Analytical Methods, 3th ed. Method 1501, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH), 2003.
- [2] 勞工作業環境空氣中有害物容許濃度標準,行政院勞工委員會,民國92年12月。
- [3] 作業環境空氣中有害物標準分析參考方法通則篇,行政院勞工委員會,民國80 年6月。
- [4] NIOSH Manual of Analytical Methods, 2nd ed., V.3, S165, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-C (1977).

附註一 採樣分析流程圖

附註二 所參考分析方法之主要數據

- 1. 本分析方法是參照NIOSH第三版分析方法1501而成。
- 2. 儀器分析條件:

方 法: GC/FID

脱 附:1 mL 二硫化碳,放置30分鐘。

注射量:1μL

溫度 — 注入口:250℃

— 偵檢器: 300℃

 10° C/min

— 管 柱:35°C(8 min)——— 225°C

載流氣體: 氦氣, 2.6 mL/min

管 柱:毛細管柱, $30 \,\mathrm{m} \times 0.53 \,\mathrm{mm}$ ID, $3 \,\mu\,\mathrm{m}$,35% diphenyl 65% dimethyl

polysiloxane或同性質管柱。

標準樣本: 異丙苯溶於二硫化碳。

測試範圍: 0.039 ~ 3.460 mg/sample

平均精密度(S_r): 0.017

預估偵測極限: 0.0006 mg/sample

表一 異丙苯脫附效率

		添加量:1.724 mg		添加量:3.	添加量: 3.448 mg		添加量: 6.896 mg	
	介質空白	分析 量	脫附效率	分析量	脫附效率	分析量	脱附效率	
	(mg/sample)	(mg/sample)	(%)	(mg/sample)	(%)	(mg/sample)	(%)	
1	0	1.486	86.4	3.320	96.3	7.066	102.5	
2	0	1.456	84.5	3.297	95.6	7.047	102.2	
3	0	1.445	83.8	3.232	93.7	7.120	103.2	
4	0	1.438	83.4	3.240	94.0	6.841	99.2	
5	0	1.352	78.4	3.297	95.6	6.808	98.7	
6	0	1.456	83.5	3.349	97.1	6.615	95.9	
平均	脫附效率(%)		83.5		95.4		100.3	
變異	係數(%)		3.17		1.36		2.79	

三個添加量的平均脫附效率: 93.1%

分析變異係數: 2.02%

表二 儲存穩定性

		相對回收率*			
		冷藏		室沿	<u> </u>
儲存天數	樣本數	前段平均分析量 (mg)	相對百分比(%)	前段平均分析量 (mg)	相對百分比(%)
0	3	3.448	100.0	3.448	100.0
7	3	3.250	94.3	3.361	97.5
14	3	3.588	104.1	3.506	101.7
21	3	3.288	95.4	3.311	96.0
28	3	3.269	94.2	3.273	94.9

^{*} 相對百分比:相對於儲存 0 天所得回收率

^{*} 異丙苯添加量 3.448 mg