行政院勞工委員會採樣分析建議方法

方法編號: CLA1218 等級: A 編輯日期: 95年11月9日

2-甲酚 o-cresol

容許濃度 參考資料: NIOSH 2546 8/15/1994 [1]

勞委會: 5 ppm(皮) [2]

OSHA :5 ppm 分子式:CH₃C₆H₄OH

NIOSH : 2.3 ppm

ACGIH: 5 ppm 分子量: 108.14 (1 ppm = 4.42 mg/m³, @ NTP) 別名: 2-methylphenol

基本物性:

液態,密度 1.047 g/mL @ 20℃

沸點:190.95℃ CAS No.: 1319-77-3

熔點:30.9 ℃

蒸氣壓: 33 Pa (0.25mmHg,) @ 25℃ RTECS No.: GO5950000

採 樣 析 分 法:GC/FID 採樣介質: XAD-7 (100 mg/50 mg) 率: 10 ~ 100 mL/min 分析物:2-甲酚 採樣體積:最小: 1 L @ 5 ppm 脫 附:1 mL 甲醇,振盪30分鐘 最大: 32 L 注射量: 1μ L 樣品運送:例行性 儀器分析條件: 樣品穩定性:21天,室溫 溫度—注入口: 230℃ 現場空白樣品:每批樣品數的10%,至少需二 ——偵檢器: 250℃ 個以上 —管柱:95°C 確 度 [1] 載流氣體:氦氣, 16 mL/min 範圍:未評估 管柱:MXT-1 偏差:未評估 30 m × 0.53 mm (ID), 1 μm 毛細管柱

總變異係數(S_{rT}):未評估標準樣品:分析物溶於甲醇中

適用範圍[1]:以20L的空氣爲樣品時,本方法測試範圍從0.25~15 ppm (1-60 mg/m 3)。

干擾[1]:未確認。

安全衛生注意事項:甲酚會造成嚴重灼傷,經由皮膚、吸入及食入進入人體會產生危害。使用操作時應在通風良好的排煙櫃中進行。

註:本方法標出參考文獻處,指內容係直接引用該文獻。

1. 試藥

- 1.1 脫附劑:甲醇 (分析級)。
- 1.2 分析物: 2-甲酚 (分析級)。
- 1.3 氮氣。
- 1.4 氫氣。
- 1.5 經過濾之空氣。

2. 設備

- 2.1 採集設備: XAD-7 (100 mg/50 mg),見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣介質[3]。
- 2.2 個人採樣泵:流率 10 ~ 200 mL/min。
- 2.3 氣相層析儀:備有火焰離子化偵檢器(FID)、積分器以及管柱。
- 2.4 1.8 mL玻璃小瓶, 備聚四氟乙烯(PTFE)內襯的蓋子。
- 2.5 10 μ L 到 500 μ L 的 微量注射針筒; 1 m L 的注射針筒。
- 2.6 振盪器。

3. 採樣

- 3.1 個人採樣泵連結採樣管,進行流率校正,見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣[3]。
- 3.2 以正確且已知的流率採集空氣。採樣泵流率為 $10\sim100\,\mathrm{mL/min}$ 。應採集的空氣 體積約 $1\sim32\,\mathrm{L}$ 。
- 3.3 以塑膠蓋封蓋,並以石蠟薄膜(parafilm)加封後運送。

4. 脫附效率測定及樣品脫附

- 4.1 脫附效率測定
 - 4.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之脫附效率[3]。
 - 4.1.2 將採樣管兩端切開,倒出後段的XAD-7,丟棄之。
 - 4.1.3 以微量注射針筒取適量的分析物,直接注入前段的XAD-7上。添加量為 $0.168\sim0.670~{
 m mg}$ 。

- 4.1.4 以塑膠蓋封管,並以石蠟薄膜(parafilm)加封,冷藏靜置過夜。
- 4.1.5 以脫附劑脫附後,進行分析。

4.2 樣品脫附

- 4.2.1 打開採樣管塑膠蓋,將斷口切開,使開口與管徑同大,前端之玻璃綿拿出丟棄,將前段之XAD-7倒入 1.8 mL的玻璃小瓶中。取出分隔之聚甲醯胺甲酯 (PU)泡綿,後段之XAD-7倒入另一個1.8 mL的玻璃小瓶中。
- 4.2.2 每一玻璃小瓶中,加入脫附劑 1 mL,立即蓋上瓶蓋。
- 4.2.3 以振盪器振盪30分鐘後,進行分析。

5. 檢量線製作與品管

5.1 檢量線製作

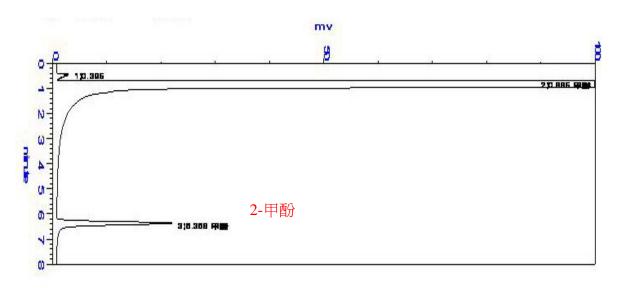
- 5.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與品管 [3]。
- 5.1.2 以注射針筒將標準品直接注入含有1 mL 脫附劑的玻璃小瓶中。所建立之檢量線濃度範圍約為 0.026 ~ 1.05 mg/mL。(註:至少應配製5種不同濃度,以建立檢量線。)
- 5.1.3 將樣品標準溶液與空白樣品一起分析。
- 5.1.4 以分析物波峰面積(或高度)對分析物的濃度,繪製檢量線。

5.2 品質管制

5.2.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與品管 [3]。

6. 儀器分析

6.1 儀器分析條件


- 1941 HB 2-3 17 11 12 15 1 1	
	條件
儀器	GC/FID
管柱	MXT-1
	30 m \times 0.53 mm (ID), 1 μ m
流率 (mL/min)	
空氣	410
氫氣	38
氮氣	16
分流比	不分流
溫度(℃)	
注入口	230
偵檢器	250
管柱	95

註:以SHIMADZU GC-14B爲例,亦可使用其它廠牌同級之儀器,但分析條件需另訂之。

6.2 大約滯留時間

化合物	滯留時間 (分鐘)		
 甲醇	0.89		
2-甲酚	6.37		

6.2 分析圖譜

6.3 脫附效率*

化合物	容許濃度	相當採樣體積	脫附量	平均脫附效率	分析變異係數
	(ppm)	(L)	(mg/sample)	(%)	CVa (%)
甲酚	5	$7.6 \sim 30.3$	$0.168 \sim 0.670$	90.5	1.13

^{*} 採樣介質爲SKC226-95 XAD-7(100 mg/50 mg)

6.4 注射樣品進入氣相層析儀,使用自動注射器或採用溶劑沖刷技術(solvent flush injection technique) —利用10 μ L 之注射針筒先以溶劑沖刷數次,濕潤針管與活塞,取3 μ L溶劑後,吸入0.2 μ L 空氣,以分開溶劑與樣品,針頭再浸入樣品中吸入1 μ L 樣品後,在空氣中後退1.2 μ L,以減少針頭樣品蒸發之機會,檢視注射針筒之針管樣品佔0.9~1.1 μ L實際取樣量。

註:假如波峰面積超過標準溶液的線性範圍,則以甲醇稀釋後再分析,計算時再乘回 稀釋的倍數。

6.5 以電子積分器或其他適當方法計算面積,分析結果自檢量線上求出。

7. 計算

由檢量線濃度所求得之濃度乘以脫附溶液的體積(以 \mathbf{m} L爲單位),得到每個樣品分析物的質量(\mathbf{W})。

$$C = \frac{(W_f - B_f + W_b - B_b) \times 10^3}{V}$$

C:空氣中有害物濃度 (mg/m³)

V:採集氣體體積 (L)

 W_f : 採樣管前段所含分析物之質量 (mg)

W_b: 採樣管後段所含分析物之質量 (mg)

B_f:現場空白樣品前段的平均質量 (mg)

B_b:現場空白樣品後段的平均質量 (mg)

註:如 (W_b) > $(W_f/10)$ 即表破出,樣品可能有損失。

^{**}民國92年12月,勞工作業環境空氣中有害物容許濃度標準。

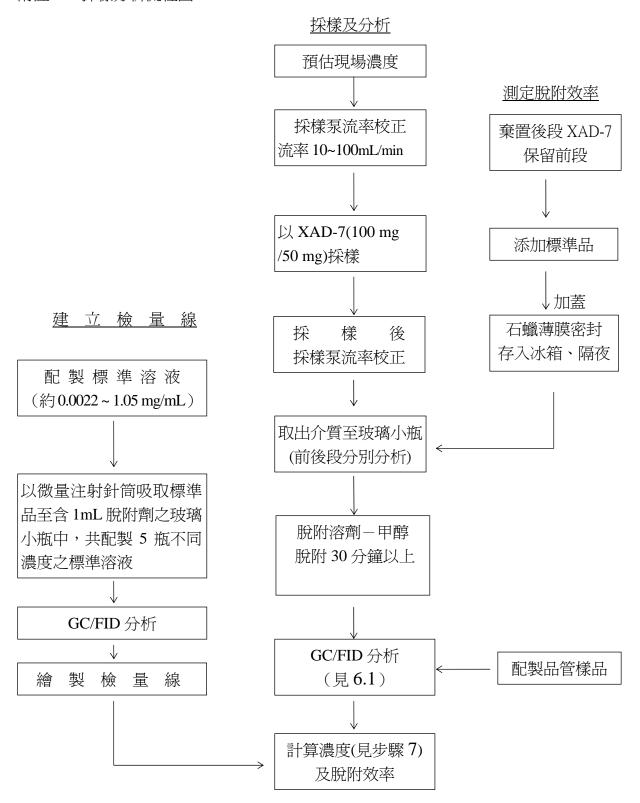
8. 方法驗證

	測試一	測試二		
儀 器	GC/FID (SHIMADZU GC-14B)	GC/FID(HP 6890)		
分析條件 溫度 (℃) 注入口	230	230		
偵檢器 管 柱	250 250 95	250 90		
流率(mL/min) 空氣 氫氣 氦氣 分流比 管柱	410 38 16 不分流 MXT-1, 30 m × 0.53 mm (ID), 1 μ m	450 40 6.5 不分流 DB-1, 30 m × 0.32 mm (ID), 0.25 μ m		
檢量線範圍	0.0022 – 1.05 mg/mL	0.00084 – 0.8376 mg/mL		
線性相關係數	0.9998	0.9999		
平均脫附效率	90.5%	89.13		
CV_a	1.13 %	2.43%		
滯留時間	6.37min	10.7 min		

9. 高濕環境下破出測試

本方法評估是以注射泵驅動法 (syringe pump drive method) 產生標準氣體,並於30℃,80% RH高濕環境下進行6個樣品之破出測試;甲酚測試濃度爲10.18 ppm,採樣流率爲100 mL/min,經480分鐘後,無破出現象產生,故建議最大採樣體積爲32L。

10. 樣本貯放穩定性測試


添加0.335mg甲酚於採樣管,進行樣品貯放穩定性測試。於室溫貯存7天樣品之回收率爲95.2%,14天回收率爲98.2%,21天回收率爲90.1%,28天回收率爲81.5%;於冷藏下貯存7天樣品之回收率爲103%,14天回收率爲97.3%,21天回收率爲94.0%,28天回收率爲81.5%,見表二。

10. 參考文獻

- [1] NIOSH Manual of Analytical Methods, 1th ed. Method 2546, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH), 1994.
- [2] 勞工作業環境空氣中有害物容許濃度標準,行政院勞工委員會,民國92年12月。
- [3] 作業環境空氣中有害物標準分析參考方法通則篇,行政院勞工委員會,民國80年6月。

.

附註一 採樣分析流程圖

附註二 所參考分析方法之主要數據

- 1. 本分析方法是參照NIOSH第一版分析方法2546[1]而成。
- 2. 儀器分析條件:

方 法: GC/FID

脱 附:2 mL 甲醇,放置30分鐘。

注射量:1μL

溫度 — 注入口:250℃

— 偵檢器: 300℃

— 管 柱:160-225°C(3°C/min)

載流氣體: 氮氣或氦氣, 1mL/min

管 柱:毛細管柱, $30 \,\mathrm{m} \times 0.32 \,\mathrm{mm} \,\mathrm{ID}$, $0.25 \,\mu\,\mathrm{m}$,Stabilwax DA

標準樣品:甲酚溶於甲醇。

測試範圍: 0.02 ~ 0.8 mg/sample

分析變異係數(CV_a): 2.8 %

預估偵測極限: 0.003 mg/sample

表一 甲酚脱附效率

	添加量: 0.16		168 mg	8 mg 添加量: 0.3		添加量:0.	加量:0.670 mg	
	介質空白	分析量	脫附效率	分析量	脫附效率	分析量	脫附效率	
	(mg/sample)	(mg/sample)	(%)	(mg/sample)	(%)	(mg/sample)	(%)	
1	0	0.157	93.5	0.307	91.6	0.601	89.7	
2	0	0.155	92.3	0.307	91.6	0.591	88.2	
3	0	0.153	91.1	0.298	88.9	0.593	88.5	
4	0	0.157	93.5	0.305	91.0	0.593	88.5	
5	0	0.157	93.5	0.306	91.3	0.582	86.9	
6	0	0.154	91.9	0.306	91.3	0.577	86.1	
平均	脫附效率(%)		92.5		91.0		88.0	
變異	係數(%)		1.05		1.13		1.46	

三個添加量的平均脫附效率: 90.5%

分析變異係數: 1.13%

表二 儲存穩定性

		相對回收率*			
		冷藏		室沿	A DL
儲存天數	樣本數	前段平均分析量 (mg)	相對百分比(%)	前段平均分析量 (mg)	相對百分比(%)
0	3	0.335	100	0.335	100
7	3	0.345	103	0.319	95.2
14	3	0.326	97.3	0.329	98.2
21	3	0.315	94.0	0.302	90.1
28	3	0.273	81.5	0.273	81.5

^{*} 相對百分比:相對於儲存 0 天所得回收率

^{*} 甲酚添加量 0.335 mg