行政院勞工委員會採樣分析建議方法

方法編號:CLA5050 等級:A 審議日期:96年10月24日

二丙二醇甲醚 Dipropylene glycol methyl ether(DPGE)

容許濃度 : 參考資料: NIOSH2554 3/15/2003 [1]

OSHA 101 1993 [4]

OSHA : 100 ppm 分子量: 148.2

NIOSH: 100 ppm

DPGME、2-甲氧基-2-氫氧基-二丙基醚

析

CAS No.: 34590-94-8

 $(1 \text{ ppm} = 6.06 \text{ mg/m}^3, @ \text{NTP})$

基本物性::

液態,密度 0.95 g/mL @ 20

沸點:189.6 RTECS No.: JM1575000

蒸氣壓: 0.05 kPa (0.5 mmHg)@20

最大: 20.4 L 振盪30分鐘

取入, 20.4 L

樣品運送:冷藏 注射量:1 μL 樣品穩定性:28天,室溫 儀器分析條件:

現場空白樣品:每批樣品數的10%,至少需二溫度—注入口:230

個以上 ——偵檢器:250

準 確 度 [1] ――管柱: 10 /min

範圍:未研究62 (6min) → 135 (5 min)載流氣體: 氮氣, 15 mL/min

總變異係數(CV_T):未研究

管柱:DB-WAX (或同等級)

30 m × 0.53 mm (ID), 1μm 毛細管柱 準確度:未研究

標準樣本:分析物溶於二氯甲烷/甲醇中

檢量線範圍: 0.182 30.4 mg/mL 可量化最低量: 0.182 mg/sample

分析變異係數(CV_a):2.24%

適用範圍[1]:以10L的空氣為樣本時,本方法之研究範圍為0.050~6.19 ppm(0.305~37.5 mg/m³)。

干擾[1]:未確認。

安全衛生注意事項:二氯甲烷為致癌物,甲醇為有毒的易燃液體。二丙二醇甲醚為具刺激性之危害化合物,使用時需在通風良好的排煙櫃中進行,並穿戴適當的防護衣及手套。

註:本方法有標出參考文獻處,指內容係直接引用該文獻。

1. 試藥

1.1 脫附劑:二氯甲烷(分析級)。

1.2 脫附劑:甲醇(分析級)。

1.3 分析物:二丙二醇甲醚(分析級)。

1.4 氮氯。

1.5 氫氣。

1.6 空氣。

2. 設備

- 2.1 採集設備:活性碳管 (100 mg/50 mg),見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣介質 [3]。
- 2.2 個人採樣泵:流率 100 200 mL/min。
- 2.3 氣相層析儀:備有火焰離子化偵檢器(FID)、積分器以及管柱。
- 2.4 1.8 mL及5 mL玻璃小瓶, 備聚四氟乙烯(PTFE)內襯的蓋子。
- 2.5 10 μL到50μL的微量注射針筒; 1 mL的注射針筒。
- 2.6 振盪器。

3. 採樣

- 3.1 個人採樣泵連結活性碳管,進行流率校正,見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣。
- 3.2 以正確且已知的流率採集空氣。採樣泵流率為 100 200 mL/min。應採集的空氣體積約3 20.4 L。
- 3.3 以塑膠蓋封蓋,並以石蠟薄膜(parafilm)加封後運送。

4. 脫附效率測定及樣品脫附

- 4.1 脫附效率測定
 - 4.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之脫附效率。
 - 4.1.2 將活性碳管兩端切開,倒出後段的活性碳,丟棄之。

- 4.1.3 以微量注射針筒取適量的分析物,直接注入前段的活性碳上。添加量 為1.52 6.08 mg/sample。
- 4.1.4 以塑膠蓋封管,並以石蠟薄膜加封,冷藏靜置過夜。
- 4.1.5 以脫附劑脫附後,進行分析。

4.2 樣品脫附

- 4.2.1 打開活性碳管塑膠蓋,將斷口切開,使開口與管徑同大,前端之玻璃 綿拿出丟棄,前段之活性碳倒入 1.8 mL的玻璃小瓶中。取出分隔之聚 甲醯胺甲酯(PU)泡綿,後段之活性碳倒入另一個1.8 mL的玻璃小瓶中。
- 4.2.2 每一玻璃小瓶中,加入脫附劑 1 mL,立即蓋上瓶蓋。
- 4.2.3 以振盪器振盪30分後,進行分析。

5. 檢量線製作與品管

5.1 檢量線製作

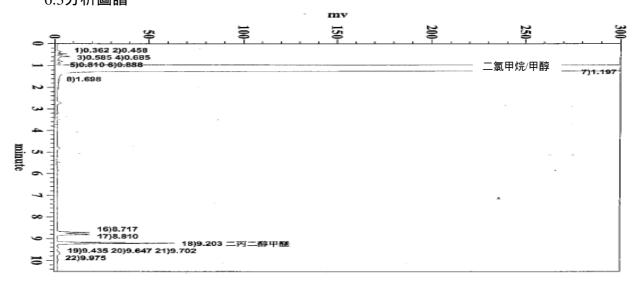
- 5.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與品管。
- 5.1.2 以注射針筒將標準品直接注入含有1 mL 脫附劑的玻璃小瓶中。所建立 之檢量線濃度範圍約添加量為0.182 30.4 mg/mL。(註:至少應配製5 種不同濃度,以建立檢量線。)
- 5.1.3 將樣品標準溶液與試藥空白樣品一起分析。
- 5.1.4 以波峰面積(或高度)對濃度,繪製檢量線。

5.2 品質管制

5.2.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作 與品管。

6. 儀器分析

6.1 儀器分析條件


	條件
儀器	GC/FID
管柱	DB-WAX
	30 m × 0.53 mm (ID), 1 μm
流率 (mL/min)	
空氣	410
氫氣	38
氮氣	18
溫度()	
注入口	230
偵檢器	250
管柱	10 /min
	62 (6min) 135 (5min)

註:以SHIMADZU GC-14B為例,亦可使用其它廠牌同級之儀器,但分析條件需另訂之。

6.2 大約滯留時間

化合物	滯留時間 (分鐘)
二氯甲烷/甲醇	1.20
二丙二醇甲醚	9.20

6.3分析圖譜

6.4 脫附效率*

化合物		相當採樣體積 脫附量		平均脫附效率	分析變異係數
	(ppm) **	(L)	(mg/sample)	(%)	CVa (%)
 二丙二醇甲醚	100	2.51~10.0	1.52 6.08	102	2.24

^{*}採樣介質為SKC226-01 活性碳管(100 mg/50 mg)

6.4 注射樣品進入氣相層析儀,使用自動注射器或採用溶劑沖刷注射技術(solvent flush injection technique) —利用 $10~\mu$ L 之注射針筒先以溶劑沖刷數次,濕潤針管與活塞,取 $1~\mu$ L溶劑後,吸入 $0.2~\mu$ L 空氣,以分開溶劑與樣品,針頭再浸入樣品中吸入 $1~\mu$ L 樣品後,在空氣中後退 $1.2~\mu$ L,以減少針頭樣品蒸發之機會,檢視注射針筒之針管樣品佔 $0.9~1.1~\mu$ L實際取樣量。

註:假如波峰面積超過標準溶液的線性範圍,則以二氯甲烷/甲醇稀釋後再分析,計算時再乘回稀釋的倍數。

6.5 以電子積分器或其他適當方法計算面積,分析結果自檢量線上求出。

7. 計算

由檢量線濃度所求得之濃度乘以脫附溶液的體積 $(以_m L$ 為單(u),得到每個樣品分析物的質量(u)。

$$C = \frac{(W_{f} - B_{f} + W_{b} - B_{b}) \times 10^{3}}{V}$$

C:空氣中有害物濃度 (mg/m³)

V:採集氣體體積 (L)

 W_f : 前段活性碳管所含分析物之質量 (mg)

W_b: 後段活性碳管所含分析物之質量 (mg)

B_f: 現場空白樣品前段的平均質量 (mg)

B_b:現場空白樣品後段的平均質量 (mg)

註:如 (W_b) > $(W_f/10)$ 即表破出,樣品可能有損失。

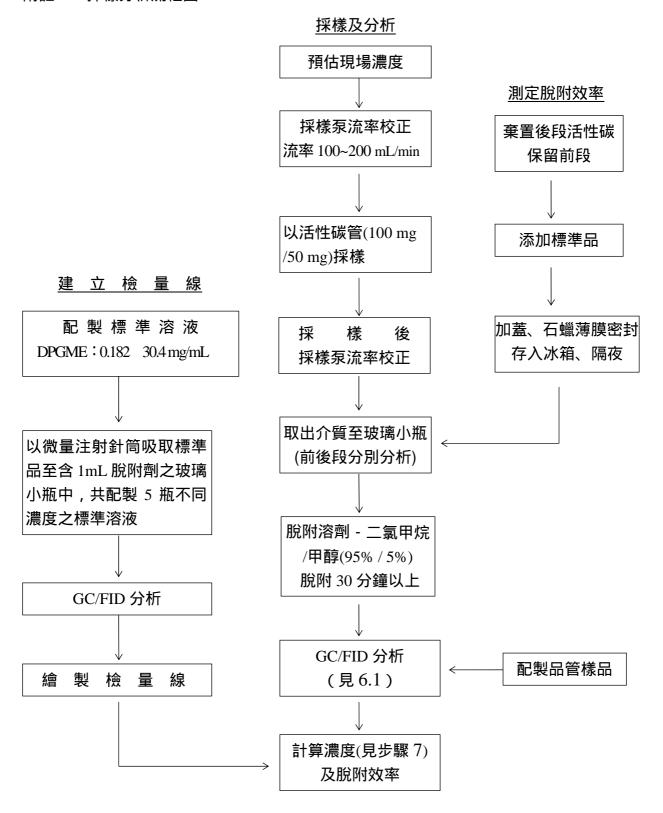
^{**}民國92年12月,勞工作業環境空氣中有害物容許濃度標準。

8. 方法驗證

	測試1	測試2		
儀 器	GC/FID (SHIMADZU GC-14B)	GC/FID (Agilent 6890)		
分析條件 溫度 注檢 管 注檢 管 統率(mL/min) 空 氣氣 分 管柱	230 250 10 /min 62 (6min) — → 35 (5min) 410 38 18 不分流 DB-WAX 30 m × 0.53 mm (ID), 1 μm	250 280 5 /min 80 (6min) → 130 (4min) 400 33 3 不分流 DB-WAX 30 m × 0.25 mm (ID), 0.25 µm		
檢量線範圍	DPGME: 0.182 30.4 mg/mL	DPGME: 0.0954 30.5 mg/mL		
線性相關係數	0.9987	1.0000		
平均脫附效率(%)	102	102		
分析變異係數(%)	2.24	1.21		
滯留時間(min)	9.20	9.29		

9. 高濕環境下破出測試

本方法評估是以注射泵驅動法 (syringe pump drive method) 產生標準氣體,並於30 ,80% RH高濕環境下進行6個樣本之破出測試;測試濃度為201.3 ppm,採樣流率為100 mL/min,經306分鐘後,出現破出現象產生,故建議最大採樣體積為20.4L。


10. 樣本貯放穩定性測試

以添加方式分別於室溫及冷藏條件下進行樣品貯放穩定性測試,測試結果如表二。

10. 參考文獻

- [1] NIOSH Manual of Analytical Methods, 2th ed. Method 1004, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH), 1994.
- [2] 勞工作業環境空氣中有害物容許濃度標準,行政院勞工委員會,民國92年12月。
- [3] 作業環境空氣中有害物標準採樣分析參考方法通則篇,行政院勞工委員會, 民國80年6月。
- [4] U.S. Department of Labor OSHA Organic Method #101, 1993.

附註一 採樣分析流程圖

附註二 所參考分析方法之主要數據

- 1. 本分析方法是參照NIOSH第二版分析方法2554及OSHA分析方法#101而成。
- 2. 儀器分析條件:

NIOSH 2554

方 法: GC/FID

脫 附:1 mL二氯甲烷/甲醇(85% / 15%), 超音波振盪30分鐘。

注射量:1 μL

温度 — 注入口:195

__ 偵檢器:240

— 管 柱: 10 /min 90 (1min) → 200

載流氣體: 氦氣, 2.8 mL/min

管 柱:毛細管柱,30 m × 0.32 mm (ID),100% PEG-DA, Stabilwax或同性質管

柱。

標準樣品:二丙二醇甲醚溶於二氯甲烷/甲醇。

測試範圍: 3.0 375 µ g

平均精密度 (S_r) : 0.031

預估偵測極限:1.0 μg

OSHA 101

方 法: GC/FID

脫 附:1 mL二氯甲烷/甲醇(95/5),超音波振盪30分鐘。

注射量:1 μL

温度 — 注入口:200

__ 偵檢器:240

— 管 柱: 10 /min

110 (11min) → 150 (2 min)

載流氣體:氫氣,3 mL/min

管 柱:毛細管柱,30 m × 0.32 mm (ID),1 μm df, Stabilwax-DA或同性質管柱。

標準樣品:二丙二醇甲醚溶於二氯甲烷/甲醇。

平均精密度(S_r): 0.0014

可信賴偵測極限: 5.1 µg/sample

表一 二丙二醇甲醚脫附效率

		添加量:1.52 mg		添加量:3	添加量:3.04 mg		添加量:6.08 mg	
	介質空白	分析量	脫附效率	分析量	脫附效率	分析量	脫附效率	
	(mg/sample)	(mg/sample)	(%)	(mg/sample)	(%)	(mg/sample)	(%)	
1	0	1.52	100	3.04	100	6.41	105	
2	0	1.55	102	3.19	105	6.37	105	
3	0	1.60	105	2.98	98.0	6.12	101	
4	0	1.53	100	3.17	104	6.43	106	
5	0	1.51	99.3	3.12	103	6.21	102	
6	0	1.54	102	3.07	101	6.22	102	
平均	脫附效率(%)		101		102		104	
變異	係數(%)		2.07		2.59		2.02	

三個添加量的平均脫附效率: 102%

分析變異係數: 2.24%

表二 二丙二醇甲醚儲存穩定性

		相對回收率*			
	-	冷藏		室沿	<u></u>
儲存天數	樣本數	前段平均分析量 (mg)	相對百分比(%)	前段平均分析量 (mg)	相對百分比(%)
0	3	3.04	100	3.04	100
7	3	3.12	103	2.93	96.4
14	3	2.89	95.1	2.97	97.7
21	3	2.95	97.1	2.95	97.0
28	3	2.89	95.1	2.85	93.8

^{*} 相對百分比:相對於儲存 0 天所得回收率百分比

^{*} 二丙二醇甲醚添加量 3.04 mg