行政院勞工委員會採樣分析建議方法

方法編號:CLA5051 等級:A 審議日期:96年10月24日

聯苯 Biphenyl 07/31/2000

容許濃度 參考資料: NIOSH 2530 8/15/1994 [1]

勞委會: 0.2 ppm [2]

OSHA : 0.2 ppm 分子式: C₆H₅C₆H₅

NIOSH : 0.2 ppm

分子量: 154.21 ACGIH: 0.2 ppm

 $(1 \text{ ppm} = 6.30 \text{ mg/m}^3, @ \text{NTP})$

基本物性: 別名: Diphenyl

固態

沸點:255 CAS No.: 92-52-4

熔點:69

蒸氣壓:8 Pa (0.06mmHg; 79ppm)@25 RTECS No.: DU8050000

閃火點:113

採 樣 分 析

採樣介質: Tenax GC (20 mg/10 mg)吸附管

率: 10~500 mL/min 採樣體積:最小:1.5 L@ 0.2 ppm

最大: 32 L

樣本運送:例行性

樣本穩定性:28天,室溫

現場空白樣本:每批樣本數的10%,至少需二

個以上

—管 柱:150 (恒溫) 準 確 載流氣體: 氮氣, 10 mL/min 度 [1]

範圍: 0.64~2.4 mg/m³(30 L 空氣樣本)

偏差:-6.4%

總變異係數(CV_T): 0.068

準確度:±15.33%

管柱:MXT-1(等同DB-1) 30 m × 0.53 mm(ID), 1 μm 毛細管柱

附:1 mL 四氯化碳,振盪30分鐘

標準樣本:分析物溶於四氯化碳中

檢量線範圍: $2.0 \times 10^{-3} \sim 7.5 \times 10^{-2} \text{ mg/mL}$

可量化最低量: 2.0×10⁻³ mg/sample

分析變異係數(CV_a): 2.5 %

法:GC/FID

分析物:聯苯

注射量:1 μL

儀器分析條件:

溫度—注入口:230

—偵檢器:250

適用範圍[1]:本方法是以30 L的空氣為樣本時,有效分析範圍0.02~0.63 ppm (0.13~4 mg/m³)。

干擾[1]:未研究。

安全衛生注意事項[1]:四氯化碳為毒性極強之液體,因此使用時需在通風良好的排煙櫃中進

行。

註:本方法有標出參考文獻處,指內容係直接引用該文獻。

1. 試藥

- 1.1 脫附劑:四氯化碳(分析級)。
- 1.2 分析物:聯苯(分析級)。
- 1.3 脫附效率標準液:5 mg/mL,稱50 mg聯苯溶入10 mL正己烷(分析級)中。
- 1.3 氮氣。
- 1.4 氫氣。
- 1.5 經過濾之空氣。

2. 設備

- 2.1 採集設備: Tenax GC (20 mg/10 mg)採樣管,見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣介質[3]。
- 2.2 個人採樣泵: 10~500 mL/min。
- 2.3 氣相層析儀:備有火焰離子化偵檢器(FID)、積分器以及管柱。
- 2.4 1.8 mL玻璃小瓶, 備聚四氟乙烯(PTFE)內襯的蓋子。
- 2.5 10 μL到50 μL的微量注射針筒; 1 mL的注射針筒。
- 2.6 振盪器。

3. 採樣

- 3.1 個人採樣泵連結Tenax GC採樣管,進行流率校正,見「作業環境空氣中有害物標準分析參考方法通則篇」之採樣[3]。
- 3.2 以正確且已知的流率採集空氣。採樣泵流率為10 500 mL/min 。應採集的空氣體積約15 32 L。
- 3.3 以塑膠蓋封蓋,並以石蠟薄膜(parafilm)加封後運送。

4. 脫附效率測定及樣本脫附

- 4.1 脫附效率測定
 - 4.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之脫附效率[3]。
 - 4.1.2 將Tenax GC吸附管兩端切開,倒出後段的Tenax GC,丟棄之。
 - 4.1.3 以微量注射針筒取適量的分析物,直接注入前段Tenax GC上。添加量為 0.01 0.04 mg/sample。

- 4.1.4 以塑膠蓋封管,並以石蠟薄膜加封,冷藏靜置過夜。
- 4.1.5 以脫附劑脫附後,進行分析。

4.2 樣本脫附

- 4.2.1 打開Tenax GC吸附管塑膠蓋,將斷口切開,使開口與管徑同大,前端之玻璃綿拿出丟棄,前段之Tenax GC之採樣管倒入 1.8 mL的玻璃小瓶中。取出分隔之聚甲醯胺甲酯(PU)泡綿,後段之Tenax GC倒入另一個1.8 mL的玻璃小瓶中。
- 4.2.2 每一玻璃小瓶中,加入脫附劑 1 mL,立即蓋上瓶蓋。
- 4.2.3 以振盪器振盪30分鐘後,進行分析。

5. 檢量線製作與品管

5.1 檢量線製作

- 5.1.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與品管[3]。
- 5.1.2 以注射針筒將標準品直接注入含有1~mL 脫附劑的玻璃小瓶中。所建立之檢量線濃度範圍約為 2.0×10^{-3} $7.5\times10^{-2}~\text{mg/mL}$ 。(註:至少應配製5種不同濃度,以建立檢量線。)
- 5.1.3 將標準溶液與試藥空白樣本同批一起分析。
- 5.1.4 以分析物的波峰面積(或高度)對分析物的濃度,繪製檢量線。

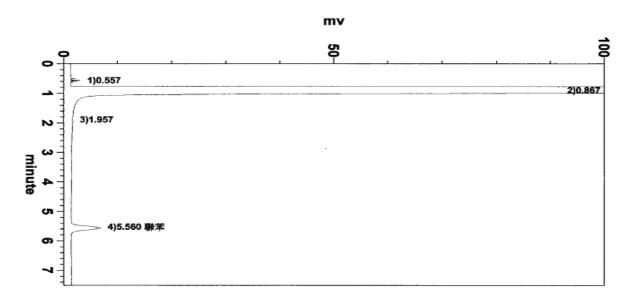
5.2 品質管制

5.2.1 見「作業環境空氣中有害物標準分析參考方法通則篇」之檢量線製作與 品管[3]。

6. 儀器分析

6.1 儀器分析條件

	條件
儀器	GC/FID
管柱	MXT-1
	$30 \text{ m} \times 0.53 \text{ mm(ID)}, 1 \mu\text{m}$
流率 (mL/min)	
空氣	410
氫氣	38
氮氣	10
分流比	不分流
溫度()	
注入口	230
偵檢器	250
管柱	150(恒溫)


註:以SHIMADZU GC-14A為例,亦可使用其它廠牌同級之儀器,但分析條件需另訂之。

6.2 大約滯留時間

化合物	滯留時間 (分鐘)
四氯化碳	0.87
聯苯	5.56

正己烷之peak與四氯化碳之peak重疊在一起

6.3 分析圖譜

6.4 脫附效率*

化合物	容許濃度	相當採樣體積	脫附量	平均脫附效率	分析變異係數
(ppm) **		(L)	(mg/sample)	(%)	CVa (%)
聯苯	0.2	8 ~ 32	0.010 ~ 0.040	95	2.5

- * 採樣介質為SKC 226-35-01 Tenax GC (20 mg/10 mg)固體吸附管
- **民國92年12月,勞工作業環境空氣中有害物容許濃度標準。
- 6.5 注射樣本進入氣相層析儀,使用自動注射器或採用溶劑沖刷技術(solvent flush injection technique)—利用10 μL 之注射針筒先以溶劑沖刷數次,濕潤針管與活塞,取約1 μL溶劑後,吸入約0.2 μL 空氣,以分開溶劑與樣本,針頭再浸入樣本中吸入1 μL 樣本後,在空氣中後退約1.2 μL,以減少針頭樣本蒸發之機會,檢視注射針筒之針管樣本佔0.9 1.1 μL實際取樣量。
- 註:假如波峰面積超過標準溶液的線性範圍,則以四氯化碳稀釋後再分析,計算時再乘回稀釋的倍數。
- 6.6 以電子積分器或其他適當方法計算面積,分析結果自檢量線上求出。

7. 計算

由檢量線濃度所求得之濃度乘以脫附溶液的體積(以mL為單位),得到每個樣本分析物的質量(\mathbf{W})。

$$C = \frac{(W_f - B_f + W_b - B_b) \times 10^3}{V}$$

C:空氣中有害物濃度 (mg/m³)

V:採集氣體體積 (L)

 W_f : 前段Tenax GC所含分析物之質量 (mg)

W_b:後段Tenax GC所含分析物之質量 (mg)

B_f : 現場空白樣本前段的平均質量 (mg)

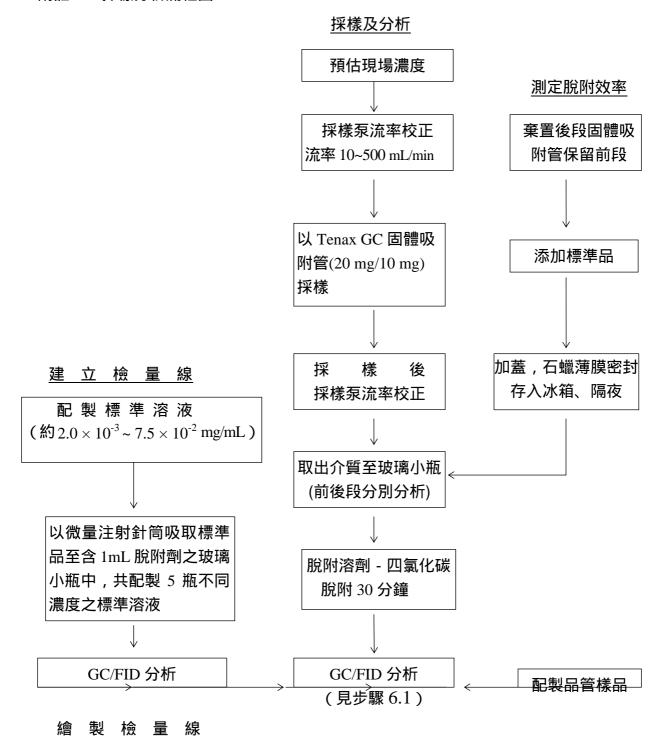
B_b:現場空白樣本後段的平均質量 (mg)

註:如 (W_b) > $(W_f/10)$ 即表破出,樣本可能有損失。

8. 方法驗證

	測試1	測試2	
儀 器	GC/FID (SHIMADZU GC-14A)	GC/FID (AGILENT GC-6890)	
分析條件 溫度() 注入口 偵檢器 管 柱	230 250 150(恒温)	230 250 150(恒溫)	
流率(mL/min) 空氣 氫氣 氮氣 分流比 管柱	410 38 10 不分流 MXT-1, 30 m × 0.53 mm(ID), 1 μm	450 33 10 不分流 HP-1, 30 m × 0.25 mm(ID), 1 μm	
檢量線範圍	$2.0 \times 10^{-3} \sim 7.5 \times 10^{-2} \text{ mg/mL}$	$2.0 \times 10^{-3} \sim 8.0 \times 10^{-2} \text{ mg/mL}$	
線性相關係數	0.9996	0.9997	
平均脫附效率(%)	95	93.2	
CV _a (%)	2.5%	2.12	
滯留時間(min)	5.56	3.39	

9. 高濕環境下破出測試


本方法評估是以注射驅動法 (syringe pump drive method) 產生標準氣體,並於30 ,80% RH高濕環境下進行6個樣本之破出測試;聯苯測試濃度為0.41 ppm,採樣流率為200 mL/min,經240分鐘後,無破出現象產生,故建議最大採樣體積為32L。

10. 樣本貯放穩定性測試

添加 0.020~mg 聯 苯 於 採 樣 管 , 進 行 樣 本 貯 放 穩 定 性 測 試 。 測 試 結 果 如 表 三 。

11. 參考文獻

- [1] NIOSH Manual of Analytical Methods, 4th ed. Method2530, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH), 1994.
- [2] 勞工作業環境空氣中有害物容許濃度標準,行政院勞工委員會,民國92年12月。
- [3] 作業環境空氣中有害物標準分析參考方法通則篇,行政院勞工委員會,民國80 年6月。

計算濃度(見步驟 7) 及脫附效率

附註二 所參考分析方法之主要數據

- 1. 本分析方法是參照NIOSH第四版分析方法2530而成。
- 2. 儀器分析條件:

方 法: GC/FID

脫 附:1 mL 四氯化碳,放置15分鐘。

注射量:5 μL

温度 — 注入口: 225

— 偵檢器:250

— 管 柱:135

載流氣體: 氮氣, 50 mL/min

管 柱:玻璃管柱, 1.8 m × 4 mm, 5% OV-17 填充80/100 mesh Chromosorb W

標準樣本:聯苯標準液體溶於四氯化碳。

測試範圍:4~120 μg/sample

平均精密度(S_r): 0.019 @ 19~76 μg/sample

預估偵測極限: 0.09 μg/sample

表一 聯苯脫附效率

		添加量: 1.0 × 10 ⁻² mg		添加量: 2.0 × 10 ⁻² mg		添加量:4.0 × 10 ⁻² mg	
	 介質空白	分析量	脫附效率	分析量	脫附效率	分析量	脫附效率
	(mg/sample)	(mg/sample)	(%)	(mg/sample)	(%)	(mg/sample)	(%)
1	0	9.2×10^{-3}	92	1.9×10^{-2}	95	4.0×10^{-2}	100
2	0	9.2×10^{-3}	92	1.9×10^{-2}	95	4.1×10^{-2}	103
3	0	9.3×10^{-3}	93	1.9×10^{-2}	95	3.9×10^{-2}	98
4	0	8.7×10^{-3}	87	1.9×10^{-2}	95	3.8×10^{-2}	95
5	0	9.2×10^{-3}	92	2.0×10^{-2}	100	4.0×10^{-2}	100
6	0	8.8×10^{-3}	88	1.9×10^{-2}	95	3.9×10^{-2}	98
平均	脫附效率(%)		91		96		99
變異	係數(%)		2.8		2.1		2.7

三個添加量的平均脫附效率: 95%

分析變異係數: 2.5%

表二 儲存穩定性

		相對回收率*			
	•	冷藏		室温	ы ш
儲存天數	樣本數	前段平均分析量	相對百分比(%)	前段平均分析量	相對百分比(%)
		(mg)		(mg)	
0	3	2.0×10^{-2}	100	2.0×10^{-2}	100
7	3	2.0×10^{-2}	100	2.0×10^{-2}	100
14	3	1.9×10^{-2}	95	1.9×10^{-2}	95
21	3	1.9×10^{-2}	95	1.8×10^{-2}	90
28	3	1.8×10^{-2}	90	1.8×10^{-2}	90

^{*} 相對百分比:相對於儲存 0 天所得回收率百分比

^{*} 聯苯添加量 2.0 × 10⁻² mg